Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8431, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600135

RESUMO

A panel comprising of 84 Turkish winter wheat landraces (LR) and 73 modern varieties (MV) was analyzed with genome wide association study (GWAS) to identify genes/genomic regions associated with increased yield under favorable and drought conditions. In addition, selective sweep analysis was conducted to detect signatures of selection in the winter wheat genome driving the differentiation between LR and MV, to gather an understanding of genomic regions linked to adaptation and yield improvement. The panel was genotyped with 25 K wheat SNP array and phenotyped for agronomic traits for two growing seasons (2018 and 2019) in Konya, Turkey. Year 2018 was treated as drought environment due to very low precipitation prior to heading whereas year 2019 was considered as a favorable season. GWAS conducted with SNPs and haplotype blocks using mixed linear model identified 18 genomic regions in the vicinities of known genes i.e., TaERF3-3A, TaERF3-3B, DEP1-5A, FRIZZY PANICLE-2D, TaSnRK23-1A, TaAGL6-A, TaARF12-2A, TaARF12-2B, WAPO1, TaSPL16-7D, TaTGW6-A1, KAT-2B, TaOGT1, TaSPL21-6B, TaSBEIb, trs1/WFZP-A, TaCwi-A1-2A and TaPIN1-7A associated with grain yield (GY) and yield related traits. Haplotype-based GWAS identified five haplotype blocks (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124), with the favorable haplotypes showing a yield increase of > 700 kg/ha in the drought season. SNP-based GWAS, detected only one larger effect genomic region on chromosome 7B, in common with haplotype-based GWAS. On an average, the percentage variation (PV) explained by haplotypes was 8.0% higher than PV explained by SNPs for all the investigated traits. Selective sweep analysis detected 39 signatures of selection between LR and MV of which 15 were within proximity of known functional genes controlling flowering (PRR-A1, PPR-D1, TaHd1-6B), GY and GY components (TaSus2-2B, TaGS2-B1, AG1-1A/WAG1-1A, DUO-A1, DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaSnRK210-4A, FBP, TaLAX1, TaPIL1 and AP3-1-7A/WPA3-7A) and 10 regions underlying various transcription factors and regulatory genes. The study outcomes contribute to utilization of LR in breeding winter wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Estações do Ano , Locos de Características Quantitativas , Secas , Turquia , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Genômica
3.
Front Genet ; 15: 1340852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440194

RESUMO

An in-depth genotypic characterisation of a diverse collection of Digitaria insularis was undertaken to explore the neutral genetic variation across the natural expansion range of this weed species in Brazil. With the exception of Minas Gerais, populations from all other states showed high estimates of expected heterozygosity (HE > 0.60) and genetic diversity. There was a lack of population structure based on geographic origin and a low population differentiation between populations across the landscape as evidenced by average Fst value of 0.02. On combining haloxyfop [acetyl CoA carboxylase (ACCase)-inhibiting herbicide] efficacy data with neutral genetic variation, we found evidence of presence of two scenarios of resistance evolution in this weed species. Whilst populations originating from north-eastern region demonstrated an active role of gene flow, populations from the mid-western region displayed multiple, independent resistance evolution as the major evolutionary mechanism. A target-site mutation (Trp2027Cys) in the ACCase gene, observed in less than 1% of resistant populations, could not explain the reduced sensitivity of 15% of the populations to haloxyfop. The genetic architecture of resistance to ACCase-inhibiting herbicides was dissected using a genome wide association study (GWAS) approach. GWAS revealed association of three SNPs with reduced sensitivity to haloxyfop and clethodim. In silico analysis of these SNPs revealed important non-target site genes belonging to families involved in herbicide detoxification, including UDPGT91C1 and GT2, and genes involved in vacuolar sequestration-based degradation pathway. Exploration of five genomic prediction models revealed that the highest prediction power (≥0.80) was achieved with the models Bayes A and RKHS, incorporating SNPs with additive effects and epistatic interactions, respectively.

4.
Front Genet ; 14: 1265859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075682

RESUMO

The two recombinant inbred line (RIL) populations developed by crossing Almaly × Avocet S (206 RILs) and Almaly × Anza (162 RILs) were used to detect the novel genomic regions associated with adult plant resistance (APR) and seedling or all-stage resistance (ASR) to yellow rust (YR) and leaf rust (LR). The quantitative trait loci (QTLs) were detected through multi-year phenotypic evaluations (2018-2020) and using high-throughput DArTseq genotyping technology. RILs exhibited significant genetic variation with p < 0.001, and the coefficient of variation ranged from 9.79% to 47.99% for both LR and YR in all Environments and stages of evaluations. The heritability is quite high and ranged between 0.47 and 0.98. We identified nine stable QTLs for YR APR on chromosomes 1B, 2A, 2B, 3D, and 4D and four stable QTLs for LR APR on chromosomes 2B, 3B, 4A, and 5A. Furthermore, in silico analysis revealed that the key putative candidate genes such as cytochrome P450, protein kinase-like domain superfamily, zinc-binding ribosomal protein, SANT/Myb domain, WRKY transcription factor, nucleotide sugar transporter, and NAC domain superfamily were in the QTL regions and probably involved in the regulation of host response toward pathogen infection. The stable QTLs identified in this study are useful for developing rust-resistant varieties through marker-assisted selection (MAS).

5.
Curr Top Med Chem ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37711006

RESUMO

Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.

8.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771512

RESUMO

Plant omics, which includes genomics, transcriptomics, metabolomics and proteomics, has played a remarkable role in the discovery of new genes and biomolecules that can be deployed for crop improvement. In wheat, great insights have been gleaned from the utilization of diverse omics approaches for both qualitative and quantitative traits. Especially, a combination of omics approaches has led to significant advances in gene discovery and pathway investigations and in deciphering the essential components of stress responses and yields. Recently, a Wheat Omics database has been developed for wheat which could be used by scientists for further accelerating functional genomics studies. In this review, we have discussed various omics technologies and platforms that have been used in wheat to enhance the understanding of the stress biology of the crop and the molecular mechanisms underlying stress tolerance.

9.
Front Genet ; 13: 876987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082000

RESUMO

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system was initially discovered as an underlying mechanism for conferring adaptive immunity to bacteria and archaea against viruses. Over the past decade, this has been repurposed as a genome-editing tool. Numerous gene editing-based crop improvement technologies involving CRISPR/Cas platforms individually or in combination with next-generation sequencing methods have been developed that have revolutionized plant genome-editing methodologies. Initially, CRISPR/Cas nucleases replaced the earlier used sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), to address the problem of associated off-targets. The adaptation of this platform led to the development of concepts such as epigenome editing, base editing, and prime editing. Epigenome editing employed epi-effectors to manipulate chromatin structure, while base editing uses base editors to engineer precise changes for trait improvement. Newer technologies such as prime editing have now been developed as a "search-and-replace" tool to engineer all possible single-base changes. Owing to the availability of these, the field of genome editing has evolved rapidly to develop crop plants with improved traits. In this review, we present the evolution of the CRISPR/Cas system into new-age methods of genome engineering across various plant species and the impact they have had on tweaking plant genomes and associated outcomes on crop improvement initiatives.

10.
Front Plant Sci ; 13: 851079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860541

RESUMO

Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.

11.
Future Virol ; 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35747327

RESUMO

Aim: The aim of this study was to investigate the SARS-CoV-2 spike protein evolution during the first and second wave of COVID-19 infections in India. Materials & Methods: Detailed mutation analysis was done in 763 samples taken from GISAID for the ten most affected Indian states between March 2020 to August 2021. Results: The study revealed 242 mutations corresponding to 207 sites. Fifty one novel mutations emerged during the assessment period, including many with higher transmissibility and immune evasion functions. Highest number of mutations per spike protein also rose from 5 (first wave) to 13 (second wave). Conclusion: The study identified mutation-rich and no mutation regions in the spike protein. The conserved spike regions can be useful for designing future diagnostics, vaccines and therapeutics.

12.
Future Virol ; 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35747328

RESUMO

This review collates information on the onset of COVID-19, SARS-CoV-2 genome architecture, emergence of novel viral lineages that drove multiple waves of infection around the world and standard and fast track development of vaccines. With the passage of time, the continuously evolving SARS-CoV-2 has acquired an expanded mutational landscape. The functional characterization of spike protein mutations, the primary target of diagnostics, therapeutics and vaccines has revealed increased transmission, pathogenesis and immune escape potential in the variant lineages of the virus. The incurred mutations have also resulted in substantial viral neutralization escape to vaccines, monoclonal, polyclonal and convalescent antibodies presently in use. The present situation suggests the need for development of precise next-generation vaccines and therapeutics by targeting the more conservative genomic viral regions for providing adequate protection.

13.
Methods Mol Biol ; 2481: 341-351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35641773

RESUMO

With the advancements in next-generation sequencing technologies, leading to millions of single nucleotide polymorphisms in all crop species including wheat, genome-wide association study (GWAS) has become a leading approach for trait dissection. In wheat, GWAS has been conducted for a plethora of traits and more and more studies are being conducted and reported in journals. While application of GWAS has become a routine in wheat using the standardized approaches, there has been a great leap forward using newer models and combination of GWAS with other sets of data. This chapter has reviewed all these latest advancements in GWAS in wheat by citing the most important studies and their outputs. Specially, we have focused on studies that conducted meta-GWAS, multilocus GWAS, haplotype-based GWAS, Environmental- and Eigen-GWAS, and/or GWAS combined with gene regulatory network and pathway analyses or epistatic interactions analyses; all these have taken the association mapping approach to new heights in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Haplótipos , Fenótipo , Locos de Características Quantitativas , Triticum/genética
14.
Sci Rep ; 12(1): 7037, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487909

RESUMO

Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS). The GWAS panel was genotyped using Breeders' 35 K Axiom Array and phenotyped in three different environments during 2019-2020. A total of 55 marker-trait associations (MTAs) were identified representing all three sub-genomes of wheat. The highest number of MTAs were identified for GPC (23), followed by TKW (15), TW (11), GFeC (4), and GZnC (2). Further, a stable SNP was identified for TKW, and also pleiotropic regions were identified for GPC and TKW. In silico analysis revealed important putative candidate genes underlying the identified genomic regions such as F-box-like domain superfamily, Zinc finger CCCH-type proteins, Serine-threonine/tyrosine-protein kinase, Histone deacetylase domain superfamily, and SANT/Myb domain superfamily proteins, etc. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection.


Assuntos
Desnutrição , Triticum , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Desnutrição/metabolismo , Micronutrientes/genética , Micronutrientes/metabolismo , Triticum/genética
15.
Nat Commun ; 13(1): 826, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149708

RESUMO

Allopolyploidy greatly expands the range of possible regulatory interactions among functionally redundant homoeologous genes. However, connection between the emerging regulatory complexity and expression and phenotypic diversity in polyploid crops remains elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci (eQTL) and evaluate their effects on the population-scale variation in homoeolog expression dosage. The relative contribution of cis- and trans-eQTL to homoeolog expression variation is strongly affected by both selection and demographic events. Though trans-acting effects play major role in expression regulation, the expression dosage of homoeologs is largely influenced by cis-acting variants, which appear to be subjected to selection. The frequency and expression of homoeologous gene alleles showing strong expression dosage bias are predictive of variation in yield-related traits, and have likely been impacted by breeding for increased productivity. Our study highlights the importance of genomic variants affecting homoeolog expression dosage in shaping agronomic phenotypes and points at their potential utility for improving yield in polyploid crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genômica , Fenótipo , Poliploidia , Triticum/genética , Alelos , Mapeamento Cromossômico , Genoma de Planta , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/fisiologia
16.
Plant Genome ; 15(1): e20165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34750999

RESUMO

The International Maize and Wheat Improvement Center (CIMMYT) annually distributes advanced wheat (Triticum aestivum L.) breeding lines to collaborators worldwide through the International Wheat Improvement Network. Lines are disseminated through international nurseries, including the Elite Spring Wheat Yield Trial (ESWYT) targeted to optimal (irrigated and high production) wheat production areas and the Semi-arid Wheat Yield Trial (SAWYT) targeted to low rainfall environments. A total of 2,184 wheat lines that formed the ESWYT and SAWYT since 1979 and 1992, respectively, were genotyped using genotyping-by-sequencing to explore trends of genetic diversity and selection footprints associated with continuous crop improvement and adaptation. Due to a small population size of each trial, adjacent year trials were pooled into subpopulations. Population structure was evaluated using discriminant analysis of principal components and fixation index. High levels of admixture within and across the ESWYT and SAWYT subpopulations were revealed, indicating that the entire genetic diversity in the overall CIMMYT germplasm pool is harnessed to target core traits to individual mega-environments. Genome wide scans of deviations of minor allele frequencies at each marker identified large linkage blocks in several chromosomes. The scans also revealed that 9.8 and 2.0% of the SNP markers could be associated to selection signatures over time and to environmental adaptation (significant deviations between ESWYT and SAWYT), respectively. Several known genes and previously identified haplotypes associated with grain yield in more recent CIMMYT elite germplasm did fall into genomic regions with directional selection.


Assuntos
Melhoramento Vegetal , Triticum , Genótipo , Desequilíbrio de Ligação , Fenótipo , Triticum/genética
17.
Front Cell Dev Biol ; 10: 1072716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684438

RESUMO

Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.

19.
Front Nutr ; 8: 669444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211996

RESUMO

Micronutrient and protein malnutrition is recognized among the major global health issues. Genetic biofortification is a cost-effective and sustainable strategy to tackle malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC), and thousand kernel weight (TKW) were investigated in a set of 163 recombinant inbred lines (RILs) derived from a cross between cultivated wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops tauschii [409]//BCN). The RIL population was genotyped using 100 simple-sequence repeat (SSR) and 736 single nucleotide polymorphism (SNP) markers and phenotyped in six environments. The constructed genetic map had a total genetic length of 7,057 cM. A total of 21 novel quantitative trait loci (QTL) were identified in 13 chromosomes representing all three genomes of wheat. The trait-wise highest number of QTL was identified for GPC (10 QTL), followed by GZnC (six QTL), GFeC (three QTL), and TKW (two QTL). Four novel stable QTL (QGFe.iari-7D.1, QGFe.iari-7D.2, QGPC.iari-7D.2, and QTkw.iari-7D) were identified in two or more environments. Two novel pleiotropic genomic regions falling between Xgwm350-AX-94958668 and Xwmc550-Xgwm350 in chromosome 7D harboring co-localized QTL governing two or more traits were also identified. The identified novel QTL, particularly stable and co-localized QTL, will be validated to estimate their effects on different genetic backgrounds for subsequent use in marker-assisted selection (MAS). Best QTL combinations were identified by the estimation of additive effects of the stable QTL for GFeC, GZnC, and GPC. A total of 11 RILs (eight for GZnC and three for GPC) having favorable QTL combinations identified in this study can be used as potential donors to develop bread wheat varieties with enhanced micronutrients and protein.

20.
Front Genet ; 12: 652653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194467

RESUMO

The development of nutritionally enhanced wheat (Triticum aestivum L.) with higher levels of grain iron (Fe) and zinc (Zn) offers a sustainable solution to micronutrient deficiency among resource-poor wheat consumers. One hundred and ninety recombinant inbred lines (RILs) from 'Kachu' × 'Zinc-Shakti' cross were phenotyped for grain Fe and Zn concentrations and phenological and agronomically important traits at Ciudad Obregon, Mexico in the 2017-2018, 2018-2019, and 2019-2020 growing seasons and Diversity Arrays Technology (DArT) molecular marker data were used to determine genomic regions controlling grain micronutrients and agronomic traits. We identified seven new pleiotropic quantitative trait loci (QTL) for grain Zn and Fe on chromosomes 1B, 1D, 2B, 6A, and 7D. The stable pleiotropic QTL identified have expanded the diversity of QTL that could be used in breeding for wheat biofortification. Nine RILs with the best combination of pleiotropic QTL for Zn and Fe have been identified to be used in future crossing programs and to be screened in elite yield trials before releasing as biofortified varieties. In silico analysis revealed several candidate genes underlying QTL, including those belonging to the families of the transporters and kinases known to transport small peptides and minerals (thus assisting mineral uptake) and catalyzing phosphorylation processes, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA